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Abstract

Diode lasers are useful in military and commercial applications that have strict

requirements for size, weight and power. This includes the use of diode lasers in

optoelectronic and photonic integrated circuits, which can lead to new technologies

in optical communications and optical interconnects in high performance computing

systems. For these systems to be effective, the diode laser must be modulated at

frequencies beyond current limits which are typically a few GHz. This barrier can be

broken by optically coupling a diode laser with a similar laser.

A set of single mode rate equations models the dynamics of twin optically cou-

pled diode lasers. Steady states of the system are derived analytically or calculated

numerically when an analytic expression is not easily available. The stability of the

steady states is examined by using a linear stability analysis, which is also used in

an algorithm that calculates the infinitesimal modulation response. The modulation

response is also calculated by using a numerical method that directly integrates the

rate equations. Typical parameters for an InGaAsP diode laser are used in the algo-

rithms to investigate mutual coupling and evanescent coupling. It will be shown that

mutually coupled lasers can be effectively modulated out to frequencies of approxi-

mately 9 GHz compared to 4 GHz for a solitary laser. For evanescent coupling, the

steady states are unstable over large regions of the parameter space, but this is reme-

died by introducing asymmetric DC currents through the lasers or by introducing the

effects of gain saturation. With stable steady states, evanescently coupled lasers can

be effectively modulated at frequencies out to about 30 GHz which is more than a

seven fold improvement over a solitary laser.
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MODULATION RESPONSE

OF

TWIN OPTICALLY COUPLED

DIODE LASERS

I. Introduction

Diode lasers are useful in high speed optical communications, as well as long-haul

terrestrial and transoceanic communications [1; 2]. Because of their small size and

high efficiency, they are also useful in UAV and satellite payloads, as well as in other

remote tactical applications that have strict requirements on size, weight and power

[1]. Diode lasers undergoing optical feedback or injection can be driven into chaos.

In this state diode lasers can be used for secure transmission of information [3; 4].

Diode lasers can also play an important role in optoelectronic and photonic integrated

circuits as small efficient sources of photons [5]. These optoelectronic and photonic

devices can possibly lead to the next generation of communications and computing

devices, where the circuitry makes use of photons instead of electrons to process

information and perform computations.

In order to transmit information, the output of the diode laser must be mod-

ulated. This is commonly achieved in diode lasers by varying the electrical current

through the laser [6]. The diode laser must be effectively modulated at high fre-

quencies for fast transmission of information. While diode lasers are small, light and

efficient, they typically do not perform effectively when modulated at frequencies

beyond the relaxation oscillation frequency, which is typically a few gigahertz [6].

However, it has been shown in experiments [7; 8] and theory [1; 2; 6] that diode lasers

can be effectively modulated beyond the frequency of relaxation oscillations when

optically injected or optically coupled with similar diode lasers. Because of this, the
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modulation characteristics of coupled diode lasers have become a topic of interest

[7; 8; 9; 10; 11; 12].

The modulation characteristics of a diode laser are examined by studying the

modulation response. The modulation response of a diode laser is defined as the

ratio of the modulated electric field amplitude to the modulated electrical current

amplitude through the laser normalized to the response at a modulation frequency

of zero [1; 13]. From the modulation response, characteristics such as bandwidth

and peak response are extracted. Figure 1 shows some features of the modulation

response of a solitary diode laser. For communications and other applications, the

bandwidth should be broad, which allows more information to be transmitted, and

the modulation response as flat as possible across the bandwidth in order to avoid

having the band dominated by one or possibly a few modulation frequencies.
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Figure 1. Some properties of the modulation response for a solitary InGaAsP diode
laser. Adapted from Reference [1] and Reference [14].
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In order to calculate the modulation response, the dynamics of the laser must

be studied. The first step is to derive [13; 14; 15] an appropriate set of rate equations.

For a solitary laser, a set of equations that describe the loss and gain of photons as

well as the loss and gain of electrons in the gain medium is sufficient [14]. However,

the model of a coupled laser system must account for the electric field amplitude and

phase, since the electric fields of the twin lasers must be coherently added [16]. In

Section 2.1, a rate equation for the complex slowly varying electric field is formulated

and used in Section 2.2 to develop a model for a system of twin optically coupled diode

lasers [11; 12]. The model is then applied to a solitary laser in Section 2.3. This will

establish a performance baseline for the coupled system as well as define some terms

commonly used in this field of study. The treatment used for the solitary laser is

then used in Chapter III to develop a set of computational methods that determine

the stability of the steady states (Section 3.1), compute the infinitesimal modulation

response (Section 3.2), and numerically compute the modulation response (Section

3.3). Next, these computational methods are used in Chapter IV to simulate two

cases of optical coupling (Figure 2). First in Section 4.1, where the lasers are mutually

coupled (Figure 2a) by directly injecting photons through the output couplers [17]

and second where photons are passed through the sides of the lasers (Figure 2b) by

way of an evanescent wave [1; 6; 18; 19]. It is shown in this document that the

bandwidth of mutually coupled lasers is slightly enhanced when modulated in-phase

with the same signal, but when modulated out-of-phase the response becomes flatter.

It is also shown in this document that the modulation bandwidth of evanescently

coupled diode lasers is about six times that of a solitary laser when the coupled lasers

are modulated out-of-phase with the same signal.

3



(a) Mutually Coupled Diode Lasers
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(b) Evanescently Coupled Diode Lasers
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Figure 2. (a) Mutually coupled buried-heterostructure twin diode lasers. Between
the lasers the photons couple out of the output couplers and into the output couplers
of the other laser. (b) Evanescently coupled buried-heterostructure twin diode lasers.
The confinement layers set up the lasing mode through total internal reflection. When
the lasers are close enough together the evanescent waves in each laser will couple
into the lasing mode of the other. Adapted from Reference [13] and Reference [20].
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II. Theory

In this document single mode rate equations are used to model the dynamics of twin

optically coupled diode lasers. Because of this, it is important to understand how

these rate equations are derived. The first step is to examine a standard set of rate

equations for solitary diode lasers [14; 21]. These standard equations describe the

photon and carrier densities in the diode laser, but in order to model an optically

coupled system, rate equations for the electric field amplitude and phase must be

derived [13]. Once this is complete, the model for a coupled system is developed.

Finally, the model is applied to a solitary laser, which establishes a performance

baseline and leads into the development of computational methods for the coupled

system.

2.1 Rate Equations

Diode laser systems are modeled by a set of rate equations that describe the

exchange of carriers and photons [14; 21]. The rate equation for the photon density

is

dS

dt
= G(N, S)S(t) +Rsp − S(t)

τp
, (1)

and includes terms that account for gains in photons due to spontaneous and stimu-

lated emission and losses due to absorption and output coupling. The rate equation

for the carrier density is

dN

dt
= P (t) − N(t)

τc
−G(N, S)S(t), (2)

and includes terms that account for gain due to pumping and losses due to stimulated

emission, spontaneous emission and non-radiative transitions. In Equations (1,2) t

is time in seconds, S is the photon density in cm−3, G is net gain per second, and

Rsp is the rate of photons that are spontaneously emitted into the lasing mode in

5



cm−3s−1. The term that includes the photon lifetime in seconds (τp) accounts for

the loss of photons due to absorption and output coupling. The term that includes

the carrier density in cm−3 (N) accounts for the number of electron-hole pairs in

the active region. The electrical pumping rate in cm−3s−1 (P ) is proportional to the

current density through the diode laser. The term that includes the carrier lifetime

in seconds (τc) accounts for electron-hole recombination for both radiative and non-

radiative transitions. Figure 3 illustrates the processes in a diode laser that are

described by the rate equations.

Figure 3. Lasing in a diode laser. Gray arrows indicate photons that contribute
to the lasing mode. Solid black circles indicate electrons (carriers). Hollow black
circles indicate holes. The large gray circle indicates spontaneously emitted photons
in the lasing mode. The large hollow circle indicates spontaneously emitted photons
not in the lasing mode and the curved black line indicates non-radiative transitions.
Downward pointing black arrows indicate electron hole recombination and the upward
pointing black arrow indicates electron promotion to the conduction band through
photon absorption.

If the photon density is assumed to be at a level where gain saturation effects

are minimal, then a linear model of gain [14; 22] can be used. The linear gain model

6



is

G(N) = Gth +GN(N −Nth) =
1

τp
+GN(N −Nth), (3)

where Gth is the threshold gain with units of s−1, GN is the differential gain with

units of cm3/s, and Nth is the threshold carrier density. Since S(t)
τp

accounts for all

losses in the lasing mode, the threshold gain equals 1
τp

. If the number of photons in

the lasing mode is primarily due to stimulated emission, which is typically the case

while operating above threshold, then the rate of spontaneous emission into the lasing

mode can be ignored. With this assumption and the linear gain model, Equations

(1,2) become

dS

dt
= GN(N −Nth)S(t) (4)

dN

dt
= P (t) − N(t)

τc
− (

1

τp
+GN(N −Nth))S(t). (5)

This set of rate equations can be used to model the dynamics of a solitary diode laser,

but in order to model coupled diode lasers the fields created by stimulated emission

and the fields created by coupling within each laser must be coherently added. This

requires rate equations for the electric fields in each laser. The place to start for these

rate equations is Maxwell’s wave equation [13; 14; 15].

The following derivation follows Agrawal and Dutta’s treatment in Reference

[13]. Assuming propagation along an arbitrary z-axis, non-conductive and nonmag-

netic materials, instantaneous changes in the polarization field, and single mode op-

eration, the wave equation for the electric field is written as

∂2E(x, y, z, t)

∂z2
= ε

1

c2
∂2

∂t2
E(x, y, z, t), (6)

7



where E is the electric field in Gaussian units, c is the speed of light in a vacuum,

and ε is the relative permittivity. The electric field is written as

E(x, y, z, t) = ψ(x, y) sin(kz)E(t)e−iωt, (7)

where E is the slowly varying electric field, ω is the angular frequency of the lasing

mode, and k is the effective mode propagation constant. The transverse electric

field distribution is represented by ψ(x, y) while sin(kz) accounts for the electric field

distribution along the direction of propagation created by the Fabry-Perot cavity

[13]. Substituting Equation (7) into Equation (6) and ignoring second derivatives of

E, since it is assumed to be slowly varying, yields

−k2ψ(x, y) sin(kz)E(t) = εψ(x, y) sin(kz)

(
−2iω

c2
∂E

∂t
− ω2

c2
E(t)

)
. (8)

The spatial dependence of Equation (8) is handled by multiplying Equation (8) by

ψ(x, y) sin(kz) and integrating across all x, y, and z. Assuming that ψ(x, y) sin(kz)

is properly normalized such that

∫ ∫ ∫
ψ(x, y)2 sin2(kz)dxdydz = 1, (9)

Equation (8) becomes

−〈ε〉2iω
c2

∂E

∂t
=

(
〈ε〉ω

2

c2
− k2

)
E(t), (10)

where

〈ε〉 =

∫ ∫ ∫
ε(x, y)ψ(x, y)2 sin2(kz)dxdydz.

Since the electric field will most likely be dispersed across several materials, ε may not

be constant across the laser. This is the reason for 〈ε〉, which is a weighted average

of relative permittivities across the areas where there is an electric field and can be

8



approximated as the square of the effective mode index. While lasing, the carrier

density is pinned at its threshold value as well as the gain. This means that the

relative permittivity is real at threshold, and any deviations in the carrier density

will lead to a change in relative permittivity [15]. This is accounted for with

〈ε〉 = (nr + δnr + iδni)
2

≈ n2
r + 2inrδni(1 − iα),

(11)

where

α =
δnr

δni

. (12)

In Equation (11), nr is the real part of the effective mode index, ni is the imaginary

part of the effective mode index, δ indicates small deviations, and α is the line-width

enhancement factor [15]. Since

k ≈ nr
ω

c
, (13)

Equation (10) is written as

∂E

∂t
= −ωδni

nr
E(t). (14)

The imaginary part of the refractive index is related to net gain through

1

2
(G(N,E) − 1

τp
) = −ωδni

nr
. (15)

With Equation (15) and using the linear gain model in Equation (3), Equation (14)

is written as

∂E

∂t
=

1

2
(1 − iα)GN(N −Nth)E(t), (16)

9



which is the rate equation for the slowly varying electric field. Since the square of the

absolute value of the slowly varying electric field is proportional to the intensity and

intensity is proportional to the photon density, the electric field can be normalized

such that S = EE∗. With this normalization, the rate equations for the slowly

varying electric field and carrier density become

dE

dt
=

1

2
(1 − iα)GN(N −Nth)E(t) (17)

dN

dt
= P (t) − N(t)

τc
− (

1

τp
+GN(N −Nth))|E(t)|2. (18)

Table 1 shows some typical values of the parameters in Equations (17, 18). These

equations can be used to model a solitary laser, but an additional term will need to

be added to Equation (17) in order to model diode lasers undergoing optical injection

or feedback. This is converted in the next section where the model for twin optically

coupled diode lasers is developed.

Table 1. Parameters for a 1.3 μm buried-heterostructure InGaAsP diode laser [13].

Name Symbol Value Units
Line-width Enhancement Factor α 5 -
Carrier Lifetime τc 2.2 ns
Photon Lifetime τp 1.6 ps
Time in Cavity τin 2.8 ps
Differential Gain GN 6.6 × 10−7 cm3/s
Threshold Carrier Density Nth 1.0 × 1018 cm−3

Threshold Current - 15.8 mA
Cavity Length - 250 μm
Active Region Width - 2 μm
Active Region Thickness - 0.2 μm
Effective Mode Index - 3.4 -

2.2 Model of Twin Optically Coupled Diode Lasers

A diode laser undergoing optical injection or feedback is modeled by a modified

version of the rate equations derived in Section 2.1. Lang and Kobayashi show that

10



the rate equation for the electric field needs an additional term in order to account

for optical injection or feedback [16]. The modified rate equations are

dE

dt
=

1

2
(1 − iα)GN(N −Nth)E(t) +

κ

τin
Einj(t− τ) (19)

dN

dt
= P (t) − N(t)

τc
− (

1

τp
+GN(N −Nth))|E(t)|2, (20)

where κ is the optical coupling term, τin is the time that a photon takes to transverse

the laser cavity twice, and τ is the time delay of the optical injection or feedback.

For convenience, Equations(19,20) are transformed into dimensionless form [22; 23]

by introducing

Ê ≡
√

τcGN

2
E

N̂ ≡ τpGN

2
(N −Nth)

t̂ ≡ t
τp

P̂ ≡ τpGNNth

2

(
P

Pth
− 1
)

Pth = Nth

τc

T ≡ τc

τp

κ̂ ≡ κτp

τin

τ̂ ≡ τ
τp
.

(21)

In these equations, Ê is the dimensionless slowly varying electric field, N̂ is the

dimensionless excess carrier density, t̂ is dimensionless time, P̂ is the dimensionless

excess electrical pumping rate, Pth is the threshold electrical pumping rate, and T is

the ratio of the carrier lifetime to the photon lifetime. Table 2 shows some values of

the coefficients in Equation (21) using values from Table 1. The rate equations in

terms of the new variables in Equation (21) now become

dÊ

dt̂
= (1 − iα)N̂(t̂)Ê(t̂) + κ̂Êinj(t̂− τ̂) (22)

dN̂

dt̂
= P̂ (t̂) − N̂(t̂) − (1 + 2N̂(t̂))|Ê(t̂)|2. (23)
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Table 2. Dimensionless conversion coefficients using values from Table 1.

Coefficient Value Units√
τcGN/2 2.7 × 10−8 cm3/2

τpGN/2 5.3 × 10−19 cm3

τpGNNth/2 0.53 −
T 1375 −
τp/τin 0.57 −

For a twin optically coupled diode laser system each laser is modeled by Equa-

tions (22,23) with the output of each laser injecting into the other as shown in the

following equations:

dÊ1

dt̂
= (1 − iα)N̂1Ê1 + κ̂Ê2(t̂− τ̂) (24)

dÊ2

dt̂
= (1 − iα)N̂2Ê2 + κ̂Ê1(t̂− τ̂) (25)

T
dN̂1

dt̂
= P̂1 − N̂1 − (1 + 2N̂1)|Ê1|2 (26)

T
dN̂2

dt̂
= P̂2 − N̂2 − (1 + 2N̂2)|Ê2|2. (27)

Since both Ê and κ̂ are complex, Equations (24-27) are decomposed into real and

imaginary parts by substituting

Ê(t̂) = R(t̂)eiθ(t̂) (28)

κ̂ = ηeiφ, (29)

where R is the dimensionless slowly varying electric field amplitude, θ is the slowly

varying electric field phase, η is the dimensionless coupling strength, and φ is the

coupling phase. After substitution Equations (24,25) are decomposed into their am-

12



plitude and phase parts as shown in the following equations:

dR1

dt̂
= N̂1R1 + ηR2(t̂− τ̂ ) cos(θ2(t̂− τ̂) − θ1 + φ) (30)

dR2

dt̂
= N̂2R2 + ηR1(t̂− τ̂ ) cos(θ1(t̂− τ̂) − θ2 + φ) (31)

dθ1

dt̂
= −αN̂1 + η

R2(t̂− τ̂)

R1

sin(θ2(t̂− τ̂ ) − θ1 + φ) (32)

dθ2

dt̂
= −αN̂2 + η

R1(t̂− τ̂)

R2
sin(θ1(t̂− τ̂ ) − θ2 + φ). (33)

This model is simplified by only considering instantaneous coupling where τ̂ = 0. The

slowly varying electric field phase difference,

Θ = θ2 − θ1, (34)

is now introduced to reduce the system of six equations to a system of five equations

as shown in the following equations:

dR1

dt̂
= N̂1R1 + ηR2 cos(Θ + φ) (35)

dR2

dt̂
= N̂2R2 + ηR1 cos(Θ − φ) (36)

dΘ

dt̂
= −α(N̂2 − N̂1) − η

(
R1

R2
sin(Θ − φ) +

R2

R1
sin(Θ + φ)

)
(37)

T
dN̂1

dt̂
= P̂1 − N̂1 − (1 + 2N̂1)R

2
1 (38)

T
dN̂2

dt̂
= P̂2 − N̂2 − (1 + 2N̂2)R

2
2. (39)

Table 3 shows some approximate values of the parameters in Equations (35-39). This

system of equations along with the appropriate computational methods are used to

investigate the modulation response of evanescently coupled twin diode lasers and

mutually coupled twin diode lasers, but an investigation of the modulation response

of a solitary laser is provided in the next section to establish a performance baseline

and to define some terms.
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Table 3. Typical values of the parameters in Equations (35-39).

Symbol Typical Value Reference
α ≈ 5 [1][6][15][22]
η ≈ 10−2 [22]
T ≈ 103 [1][6][22]

P̂ ≈ 1 [1][6][22]

2.3 Modulation Response of a Solitary Diode Laser

Following the procedure found in Reference [14] and [21], The rate equations

derived in Section 2.2 are used to model a solitary diode laser and solve for its in-

finitesimal modulation response. This lays out a performance baseline for the twin

optically coupled diode laser system, defines some terms and outlines the basic pro-

cedure for the linear stability analysis that will be used to analyze the coupled laser

system.

The solitary laser is modeled by taking η = 0 in Equations (35-39) and choosing

one set of subscripts to arrive at

dR

dt̂
= N̂R (40)

dθ

dt̂
= −αN̂ (41)

T
dN̂

dt̂
= P̂ − N̂ − (1 + 2N̂)R2. (42)

To find the infinitesimal modulation response Equations (40-42) are linearized about

their steady state values. The steady state values are found by equating dR
dt

in Equa-

tion (40) to zero. This means that either R = 0 or N̂ = 0. Since R �= 0, otherwise

the laser is off, then N̂ = 0, which means the laser is operating at threshold. This

result is then substituted into Equation (41) and Equation (42) to find the steady
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state values of R and θ. The steady state solutions are

N̂s = 0 (43)

Rs =

√
P̂s, (44)

where N̂s is the steady state dimensionless excess carrier density, Rs is the steady

state dimensionless slowly varying electric field amplitude, and P̂s is the steady state

dimensionless excess electrical pumping rate. The steady state slowly varying electric

field phase (θs) becomes an arbitrary constant. The linearization is accomplished by

substituting

R(t̂) = Rs + δR(t̂) (45)

θ(t̂) = θs + δθ(t̂) (46)

N̂(t̂) = N̂s + δN̂(t̂) (47)

P̂ (t̂) = P̂s + δP̂ (t̂) (48)

into Equations (40-42). The equations are then expanded while eliminating terms

such as δR2 and δRδN̂ since the δ terms are defined as small oscillations about the

steady state values. The results of this linearization are

d

dt̂
δR =

√
P̂sδN̂ (49)

d

dt̂
δθ = −αδN̂ (50)

T
d

dt̂
δN̂ = −(1 + 2P̂s)δN̂ − 2

√
P̂sδR+ δP̂ . (51)

This set of equations can also be written in matrix form,

d

dt̂

⎡
⎢⎢⎢⎣
δR

δθ

δN̂

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 0
√
P̂s

0 0 −α
−2
√
P̂s/T 0 −(1 + 2P̂s)/T

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
δR

δθ

δN̂

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

1/T

⎤
⎥⎥⎥⎦ δP̂ , (52)
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where the 3x3 matrix is the Jacobian of Equations (40-42) when the dimensionless

excess electrical pumping rate is held constant. The dynamics of this system will now

be examined with no modulation signal, δP̂ = 0, in order to define some terms that

will be used throughout this document.

Taking δP̂ = 0, Differentiating Equation (51) and substituting Equation (49)

for d
dt̂
δR gives a second order ordinary differential equation.

δN̂ ′′ +
1 + 2P̂s

T
δN̂ ′ +

2P̂s

T
δN̂ = 0. (53)

The solution of Equation (53) is

δN̂(t̂) = C1e
λ+ t̂ + C2e

λ− t̂, (54)

where

λ+ = −
(

1 + 2P̂s

2T

)
+ i

√√√√2P̂s

T
−
(

1 + 2P̂s

2T

)2

λ− = −
(

1 + 2P̂s

2T

)
− i

√√√√2P̂s

T
−
(

1 + 2P̂s

2T

)2

are the eigenvalues of the Jacobian matrix in Equation (52) and Cn are arbitrary

constants. This solution is a damped simple harmonic oscillator with a dimensionless

relaxation damping coefficient,

γr ≡ 1 + 2P̂s

2T
, (55)

and a dimensionless relaxation oscillation frequency,

ωr ≡
√

2P̂s

T
− γ2

r . (56)
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This oscillation frequency is approximated as

ωr ≈
√

2P̂s

T
, (57)

since T is approximately 103 making 2P̂s/T >> γ2
r . The approximate form of the

dimensionless relaxation oscillation frequency in Equation (57) will be used when

referring to this frequency. These terms can now be used in the derivation of the in-

finitessimal modulation response as well as in subsequent equations in this document.

The infinitesimal modulation response is found by taking the Fourier transform

of Equations (49,53) as shown in the following equations:

iωmF{δR} =

√
P̂sF{δN̂} (58)

iωm

T
F{δP̂} = −ω2

mF{δN̂} + 2γriωmF{δN̂} + ω2
rF{δN̂}, (59)

where F{} indicates a Fourier transform operation and ωm is the dimensionless angu-

lar modulation frequency. Equations (58,59) are now solved for the Fourier transform

of the electric field divided by the Fourier transform of the carrier density to arrive

at

F{δR}
F{δP̂} =

√
P̂s

T (ω2
r − ω2

m + 2iγrωm)
. (60)

Taking the absolute value yields

∣∣∣∣∣F{δR}
F{δP̂}

∣∣∣∣∣ =

√
P̂s

T
√

(ω2
m − ω2

r)
2 + 4γ2

rω
2
m

. (61)

Finally, Equation (61) is normalized to the response at zero frequency to arrive at

M(ωm) =
ω2

r√
(ω2

m − ω2
r)

2 + 4γ2
rω

2
m

, (62)

where M denotes the modulation response.
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The infinitesimal modulation response is also found by using the matrix form of

the linearized equations. This treatment is the basis for calculating the infinitesimal

modulation response of the coupled system. The first step is taking the Fourier

transform of Equation (52) to arrive at

iωm

⎡
⎢⎢⎢⎣

F{δR}
F{δθ}
F{δN̂}

⎤
⎥⎥⎥⎦ = J

⎡
⎢⎢⎢⎣

F{δR}
F{δθ}
F{δN̂}

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

1/T

⎤
⎥⎥⎥⎦F{δP̂}, (63)

where J is the Jacobian matrix. Collecting like terms and dividing by the Fourier

transform of the electrical pumping rate modulation yields

⎡
⎢⎢⎢⎣

F{δR}
F{δP̂}
F{δθ}
F{δP̂}
F{δN̂}
F{δP̂}

⎤
⎥⎥⎥⎦ = [J − iωmI]

−1

⎡
⎢⎢⎢⎣

0

0

− 1
T

⎤
⎥⎥⎥⎦ , (64)

where I is the identity matrix. Finally, the modulation response is found by multi-

plying the first row third column of the matrix in Equation (64) by − 1
T
, taking the

absolute value, and normalizing to the response at a modulation frequency of zero.

M(ωm) =

∣∣∣∣∣ [J − iωmI]
−1
1,3

J−1
1,3

∣∣∣∣∣ . (65)

Since J is known analytically, Equation (65) can be put into the same form as Equa-

tion (62).

Equations (55,56,62) show that the infinitesimal modulation response of a soli-

tary laser is externally manipulated by adjusting the dimensionless excess electrical

pumping rate. Using the parameters in Table 1, Figure 4 shows the infinitesimal

modulation response of a solitary laser at various steady state operating currents.

The function has a Lorentzian shape with a peak around the relaxation oscillation

frequency. The trend in the figures is that increased electrical pumping rates increase
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the relaxation oscillation and bandwidth, but do little to flatten the modulation re-

sponse.

The methods outlined in this section for the solitary laser will now be used in the

model for twin optically coupled diode lasers to develop the computational methods in

Chapter III. The same linear stability analysis, outlined in this section, will be applied

in Section 3.1 to determine the stability of the steady states for the coupled system.

This will lead into Section 3.2 where the method for computing the infinitesimal

modulation response of the coupled system is derived. This computational method

will mirror the matrix treatment of the solitary laser. Finally, a numerical method

will be employed in Section 3.3 to calculate the nonlinear modulation response.
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Figure 4. Modulation response of a solitary InGaAsP diode laser at an operating
current of (a) 31.6 mA, (b) 39.5 mA, and (c) 47.4 mA. The bandwidths at +6 dB are
2.4 GHz, 2.9 GHz, and 3.4 GHz respectively. Increasing current increases bandwidth
but does little to suppress the resonance at the relaxation oscillation frequency.
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III. Computational Methods

In order to compute the modulation response of the coupled system, three computa-

tional methods are developed. Since the diode lasers are modulated about a set of

steady states, the stability of the steady states needs to be determined through a lin-

ear stability analysis. This is accomplished by looking at small perturbations about

the steady states. If these perturbations grow, then the steady states are unstable and

not appropriate for modulation. Using concepts from the linear stability analysis, the

infinitesimal modulation response is calculated. This computation produces results

whether the steady states are stable or not and can be used to explore the parameter

space. The final computational method calculates the modulation response by nu-

merically integrating the rate equations and taking Fourier transforms. This method

is used to examine the modulation response at modulation amplitudes beyond the

infinitesimal limit, but requires stable steady states.

3.1 Linear Stability Analysis

The stability of the steady states is determined by examining the effect of small

perturbations about the steady states. This is accomplished through a linearization

of the rate equations by substituting

R1(t̂) = Rs,1 + δR1(t̂) (66)

R2(t̂) = Rs,2 + δR2(t̂) (67)

Θ(t̂) = Θs + δΘ(t̂) (68)

N̂1(t̂) = N̂s,1 + δN̂1(t̂) (69)

N̂2(t̂) = N̂s,2 + δN̂2(t̂) (70)

into Equations (35-39) while taking P̂1 and P̂2 as constants and ignoring products

of delta terms. As with the case of the solitary laser in Section 2.3, the result is
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expressed using the Jacobian matrix of the system as shown in the following:

d

dt̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δR1

δR2

δΘ

δN̂1

δN̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= J

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δR1

δR2

δΘ

δN̂1

δN̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (71)

Solutions to Equation (71) are exponential functions,

δR1(t̂) = C1,1e
λ1 t̂ + C1,2e

λ2 t̂ + C1,3e
λ3 t̂ + C1,4e

λ4 t̂ + C1,5e
λ5 t̂

δR2(t̂) = C2,1e
λ1 t̂ + C2,2e

λ2 t̂ + C2,3e
λ3 t̂ + C2,4e

λ4 t̂ + C2,5e
λ5 t̂

δΘ(t̂) = C3,1e
λ1 t̂ + C3,2e

λ2 t̂ + C3,3e
λ3 t̂ + C3,4e

λ4 t̂ + C3,5e
λ5 t̂

δN̂1(t̂) = C4,1e
λ1 t̂ + C4,2e

λ2 t̂ + C4,3e
λ3 t̂ + C4,4e

λ4 t̂ + C4,5e
λ5 t̂

δN̂2(t̂) = C5,1e
λ1 t̂ + C5,2e

λ2 t̂ + C5,3e
λ3 t̂ + C5,4e

λ4 t̂ + C5,5e
λ5 t̂,

(72)

where λi are eigenvalues of the Jacobian matrix and Cm,n are arbitrary constants.

For the system to be stable, the real part of all eigenvalues must be less than or equal

to zero. If the real part of any eigenvalue is greater than zero then there will be a

term that will grow exponentially, thus destabilizing the system.

3.2 Infinitesimal Modulation Response

The stability of the steady states is determined by examining small perturba-

tions about the steady states, which can also be used to calculate the infinitesimal

modulation response. The infinitesimal modulation response is calculated by includ-

ing small perturbations in the excess electrical pumping rate along with perturbations

in the steady states. This is accomplished by adding another vector to Equation(71)
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to arrive at

d

dt̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δR1

δR2

δΘ

δN̂1

δN̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= J

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δR1

δR2

δΘ

δN̂1

δN̂2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ δP̂

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1
T

L
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (73)

where δP̂ is an infinitesimal modulation about the steady state excess electrical pump-

ing rate. For simplicity and practicality, the lasers are modulated with the same signal

(δP̂ ) except for the ability to modulate the signal out-of-phase which is controlled by

the term L [1; 6]. This term takes the value of 1 for in-phase modulation and −1 for

out-of-phase modulation. The next step is to take the Fourier transform of Equation

(73) and collect terms to arrive at

−F{δP̂}

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1
T

L
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [J − iωmI]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F{δR1}
F{δR2}
F{δΘ}
F{δN̂1}
F{δN̂2}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (74)

Now, Equation (74) is divided by F{δP̂} and multiplied by (J − iωI)−1 to produce

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F{δR1}
F{δP̂}
F{δR2}
F{δP̂}
F{δΘ}
F{δP̂}
F{δN̂1}
F{δP̂}
F{δN̂2}
F{δP̂}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −[J − iωmI]
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1
T

L
T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (75)
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From Equation (75) the infinitesimal modulation response for each laser is extracted.

M1(ωm) =
|H1,4 + LH1,5|∣∣J−1

1,4 + LJ−1
1,5

∣∣ (76)

M2(ωm) =
|H2,4 + LH2,5|∣∣J−1

2,4 + LJ−1
2,5

∣∣ (77)

where

H = [J − iωI]−1.

The Matlab R© code that implements this algorithm is included in Appendix C.

As long as a set of steady states can be found, this algorithm can be used to find the

infinitesimal modulation response of a twin diode laser system whether the steady

states are stable or unstable. The infinitesimal modulation response provides some

information about the response of the system, but does not provide information about

how the system behaves when the modulation is not infinitesimal.

A numerical algorithm is developed in the next section to calculate the non-

linear modulation response. This will be used to confirm the results of the infinites-

imal modulation response as well as provide a tool that can be used to examine the

modulation response when the modulation amplitude of the electrical pumping rate

is not infinitesimal.

3.3 Non-linear Modulation Response

The modulation response is calculated numerically by first integrating the rate

equations for a period of time with a sinusoidal modulation added to the steady state

dimensionless excess electrical pumping rate. With this data, the discrete Fourier

transform of the slowly varying electric field amplitude and the discrete Fourier trans-

form of the excess electrical pumping rate are calculated, but only at the frequency

of the sinusoidal modulation. This is because the Fourier transform of the electrical

pumping rate will be a single spike at the modulation frequency. Essentially, the

23



sinusoidal modulation is sampling the modulation response at one modulation fre-

quency. After the Fourier transforms, The absolute value of each Fourier transform

element is taken and the appropriate ratio is made. This process is then repeated

for other modulation frequencies as desired. The C++ source code for the program

which implements this algorithm is included in Appendix D.

The program starts by reading an input file which includes information such

as laser parameters, coupling parameters, modulation frequency points, stable steady

states and variables to control simulation times. After reading the input file, the

integration is completed using a fourth order Runge-Kutta algorithm [24] with initial

values at the steady states and with a sinusoidal modulation added to the steady

state excess electrical pumping rate. The Runge-Kutta algorithm is

R1[n] = R1[n− 1] + (K1,1 + 2K2,1 + 2K3,1 +K4,1)/6

R2[n] = R2[n− 1] + (K1,2 + 2K2,2 + 2K3,2 +K4,2)/6

Θ[n] = Θ[n− 1] + (K1,3 + 2K2,3 + 2K3,3 +K4,3)/6

N̂1[n] = N̂1[n− 1] + (K1,4 + 2K2,4 + 2K3,4 +K4,4)/6

N̂1[n] = N̂2[n− 1] + (K1,5 + 2K2,5 + 2K3,5 +K4,5)/6

(78)

where

K1,m = dt̂ fm(t̂, R1[n− 1], R2[n− 1],Θ[n− 1], N̂1[n− 1], N̂2[n− 1])

K2,m = dt̂ fm(t̂+
dt̂

2
, R1[n− 1] +

K1,1

2
, R2[n− 1] +

K1,2

2
,Θ[n− 1] +

K1,3

2
, ...

N̂1[n− 1] +
K1,4

2
, N̂2[n− 1] +

K1,5

2
)

K3,m = dt̂ fm(t̂+
dt̂

2
, R1[n− 1] +

K2,1

2
, R2[n− 1] +

K2,2

2
,Θ[n− 1] +

K2,3

2
, ...

N̂1[n− 1] +
K2,4

2
, N̂2[n− 1] +

K2,5

2
)

K4,m = dt̂ fm(t̂+ dt̂, R1[n− 1] +K3,1, R2[n− 1] +K3,2,Θ[n− 1] +K3,3, ...

N̂1[n− 1] +K3,4, N̂2[n− 1] +K3,5)
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and

f1 = dR1

dt̂
; f2 = dR2

dt̂
; f3 = dΘ

dt̂
; f4 = dN̂1

dt̂
; f5 = dN̂2

dt̂
.

To make the discrete Fourier transform element easier to calculate and to ensure

that the modulation frequency appears at one of the discrete frequency points, the

integration time is set to a specified number of modulation periods. This also ensures

that the Fourier element of interest is at the same number of frequency points from

zero no matter what the value of the modulation frequency. Once integration is

complete, the discrete Fourier transform element is calculated for the slowly varying

electric field amplitudes out of each laser diode and for the excess electrical pumping

rate. The Fourier element is calculated using

F (p+ 1) =
N∑

l=1

f(l) cos(2πp(l − 1)/N) − i
N∑

l=1

f(l) sin(2πp(l− 1)/N), (79)

where F (p+1) is the Fourier component, N is the total number of simulation points, f

is the array that contains the simulation data in the time domain, l is the array index,

and p is the number of modulation periods. Once the Fourier elements are calculated,

the absolute values of electric field amplitude Fourier elements are divided by the

absolute value of the electrical pumping rate Fourier element. Finally, the results are

converted to decibels and printed to the output file. This algorithm calculates the

non-normalized value of the modulation response at one frequency, so the process is

repeated for additional modulation frequencies. Outside of the program, the results

are normalized to the value of the infinitesimal modulation response at zero frequency.
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IV. Simulations

In this chapter two coupling schemes are investigated. The first is mutual coupling,

shown in Figure 2(a), where photons are exchanged through the direct injection of

photons through the output couplers [8; 17]. The second is evanescent coupling,

shown in Figure 2(b), where photons are exchanged through the evanescent waves

that penetrate the waveguides created by the active regions [1; 6; 7; 9; 18; 19].

4.1 Mutual Coupling

This section investigates injection coupling as shown in Figure 2(b) where the

insulating layer may be a very small air gap. For this system a coupling phase of zero

is used in Equations (35-39), giving

dR1

dt̂
= N̂1R1 + ηR2 cos(Θ) (80)

dR2

dt̂
= N̂2R2 + ηR1 cos(Θ) (81)

dΘ

dt̂
= −α(N̂2 − N̂1) − η sin(Θ)

(
R1

R2

+
R2

R1

)
(82)

T
dN̂1

dt̂
= P̂1 − N̂1 − (1 + 2N̂1)R

2
1 (83)

T
dN̂2

dt̂
= P̂2 − N̂2 − (1 + 2N̂2)R

2
2. (84)

Depending on the insulating material the coupling phase may not be zero, but a cou-

pling phase of zero was chosen for ease of computing the steady states. For simplicity

the steady states for Equations (80-84) are calculated with symmetric steady state

excess electrical pumping rates (P̂s,1 = P̂s,2). It is shown in Appendix A that the only

stable steady states are

Θs = 0, N̂s = −η, Rs =

√
P̂s + η

1 − 2η
, (85)
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where

N̂s = N̂s,1 = N̂s,2, Rs = Rs,1 = Rs,2.

Figure 5 shows regions of stability for a typical parameter space.

Dimensionless Excess Electrical Pumping Rate

D
im

en
si

on
le

ss
 C

ou
pl

in
g 

S
tr

en
gt

h

0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5. Regions of stability for symmetric steady states of mutual coupling with
symmetric pumping rates and a steady state phase difference of zero.

For a system of twin InGaAsP lasers at a normalized coupling strength of 0.1

and a steady state current of 47.4 mA (P̂s ≈ 1), the modulation response shown in

Figure 6 has a +6 dB bandwidth of about 3.5 GHz for in-phase modulation and a

−6 dB bandwidth of about 4.4 GHz for out-of-phase modulation. Figure 6(a) shows

that increased coupling for in-phase modulation slightly increased bandwidth as well

as the position of the peak response. Figure 6(b) shows that increased coupling for

out-of-phase modulation increases bandwidth by suppressing the resonance at the

frequency of relaxation oscillations.
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(a) In-phase Modulation
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(b) Out-of-phase Modulation
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Figure 6. (a) Modulation response of twin mutually coupled diode lasers with
in-phase modulation (b) Modulation response of twin mutually coupled diode lasers
with out-of-phase modulation. The steady state current is held at 47.4 mA. Solid
lines are the infinitesimal modulation limit and dots are numerical results attained
by modulating the current at an amplitude of 316 μA.

28



4.2 Evanescent Coupling

A system of twin evanescently coupled diode lasers as shown in Figure 2b is

modeled by using a coupling phase of π
2

in Equations (35-39) [1; 6].

dR1

dt̂
= N̂1R1 − ηR2 sin(Θ) (86)

dR2

dt̂
= N̂2R2 + ηR1 sin(Θ) (87)

dΘ

dt̂
= −α(N̂2 − N̂1) + η cos(Θ)

(
R1

R2

− R2

R1

)
(88)

T
dN̂1

dt̂
= P̂1 − N̂1 − (1 + 2N̂1)R

2
1 (89)

T
dN̂2

dt̂
= P̂2 − N̂2 − (1 + 2N̂2)R

2
2. (90)

Modeling the laser system using Equations (86-90) is discussed in References [1; 6; 18].

It is shown in Reference [1] and Reference [6] that the laser system can possibly be

effectively modulated beyond the relaxation oscillation frequency by modulating the

lasers out-of-phase. A figure similar to Figure 7a is presented in Reference [1] and

[6] showing the effects of modulating the diode lasers out-of-phase. The eigenvalues

of the Jacobian indicate that there are two resonances. One resonance is around the

frequency of relaxation oscillations at about 3.9 GHz and the other is at about 20.5

GHz. The figure shows that the bandwidth is improved by about five times, but the

steady states about which the system is modulated are unstable. This means that

the response may never be observed. Appendix B shows the solution for the steady

states when the steady state excess electrical pumping rates are equated (P̂s,1 = P̂s,2).

The only real-valued stable steady states are

Θs = 0 N̂s = 0 Rs =

√
P̂s (91)

Θs = π N̂s = 0 Rs =

√
P̂s, (92)
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where

N̂s = N̂s,1 = N̂s,2, Rs = Rs,1 = Rs,2,

but as previously indicated they are unstable over a large region of the typical param-

eter space as shown in Figure 8. It appears that the states are stable when coupling

strength is very low or when coupling strength is very high and the lasers are held

close to threshold. In the first case, the lasers are essentially operating as solitary

lasers. For the second case, running the lasers close to threshold is impractical and

does not fit well with the model. This instability problem is remedied in the next

sections by introducing asymmetric pumping rates or gain saturation into the model.
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Figure 7. (a) Modulation response of twin evanescently coupled InGaAsP diode
lasers. The steady state phase difference is π, current through the lasers is 47.4 mA,
and dimensionless coupling strength is 0.1. The steady states are unstable with the
secondary resonance growing exponentially at a rate of approximately 1010s−1. (b)
The time evolution of the dimensionless slowly varying electric field in one of the lasers
with unstable steady states that are computed to within 10−6 and no modulation. The
electric field starts at the steady state value, but begins to oscillate at the secondary
resonance frequency of 20.5 GHz and then begins to oscillate chaotically.

30



(a) Θs = π N̂s = 0 Rs =
√
P̂s
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Figure 8. Regions of stability for symmetric steady states of evanescent coupling
with symmetric pumping rates and a steady state phase difference of (a) π and (b)
0. Regions in gray are where the steady states are unstable. Regions in white are
regions where the steady states are stable.
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4.2.1 Asymmetric Pumping Stabilization. For a typical InGaAsP laser the

symmetric steady states with symmetric excess electrical pumping rates are unstable

for a coupling strength of 0.1 and a synchronous steady state electrical current of 47.4

mA (Figure 7). One way of remedying this is by making the DC currents through

the lasers asymmetric. Asymmetric steady states with asymmetric excess electrical

pumping rates are found numerically using Newton’s method [24]. For this algorithm

the steady state excess electrical pumping rates are defined as

P̂s,2 = P̂s + Δ (93)

P̂s,1 = P̂s − Δ, (94)

where Δ is defined as the dimensionless excess electrical pumping rate displacement.

Substituting Equations (93, 94) into Equations (35-39) yields a new set of rate equa-

tions.

dR1

dt̂
= N̂1R1 + ηR2 cos(Θ + φ) (95)

dR2

dt̂
= N̂2R2 + ηR1 cos(Θ − φ) (96)

dΘ

dt̂
= −α(N̂2 − N̂1) − η

(
R1

R2
sin(Θ − φ) +

R2

R1
sin(Θ + φ)

)
(97)

T
dN̂1

dt̂
= P̂s − Δ − N̂1 − (1 + 2N̂1)R

2
1 (98)

T
dN̂2

dt̂
= P̂s + Δ − N̂2 − (1 + 2N̂2)R

2
2. (99)

The term P̂s is used to calculate the symmetric steady states in Equations (91,92),

which are then used as the initial guess in a Newton’s method algorithm [24]. A first

order correction to the initial guess is made by calculating the inverse of the Jacobian

matrix and multiplying it by the rate equations evaluated at the initial conditions.

This correction is then subtracted from the initial guess. This process is repeated with

the new steady state values until the steady states are reached, the maximum number

of iterations is exceeded or a tolerance (Equation (101)) is met. This algorithm is
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shown in Equation (100), and the Matlab R© function which implements it is included

in Appendix E.

�xn+1 = �xn − J−1
n
�f(�xn), (100)

where

�x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rs,1

Rs,2

Θs

N̂s,1

N̂s,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, J =

[
∂ �f

∂R1

∣∣∣
�x

∂ �f
∂R2

∣∣∣
�x

∂ �f
∂Θ

∣∣∣
�x

∂ �f

∂N̂1

∣∣∣
�x

∂ �f

∂N̂2

∣∣∣
�x

]
, �f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dR1

dt̂

dR2

dt̂

dΘ
dt̂

dN̂1

dt̂

dN̂2

dt̂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

Tol > J−1
n
�f(�xn) • J−1

n
�f(�xn). (101)

By increasing the steady state electrical pumping rate displacement (Δ), a set of

stable steady states is attained as shown in Figure 9(a). Figure 10 is created using the

same parameters as used to create Figure 7, but with a current displacement of 28.4

mA. Since the system is no longer symmetric, the modulation response out of each

laser is different. Figure 10 shows that both in-phase and out-of-phase modulation

result in a +6 dB bandwidth of about 4 GHz. Due to the secondary resonance the

out-of-phase response has an additional band that spans about 19.4 GHz from about

4.7 GHz to about 24.1 GHz. This is a significant improvement in bandwidth, but

the different responses out of each laser may not be desirable in a practical twin laser

diode system. Stabilization through gain saturation may be a more practical avenue

for stability and is addressed in the next section.
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Figure 9. Damping coefficients vs. current displacement. The steady states become
stable at about 25 mA of current displacement where the coefficient in (a) becomes
negative.
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(a) In-phase Modulation
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(b) Out-of-phase Modulation
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Figure 10. Modulation response for (a) in-phase and (b) out-of-phase modulation of
a typical InGaAsP diode laser. Solid lines are the infinitesimal modulation limit and
dots are numerical results attained by modulating at an amplitude of 316 μA. The
current displacement is 28.4 mA, the dimensionless coupling strength is 0.1, and the
phase difference is π. The response for in-phase modulation has a +6 dB bandwidth
of about 4.3 GHz. The response for out-of-phase modulation has a +6 dB bandwidth
of about 4.4 GHz, but there is another band that spans 19.4 GHz from the relaxation
oscillation frequency of 4.7 GHz to the secondary resonance frequency of 24.1 GHz.
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4.2.2 Gain Saturation Stabilization. Nichols and Winful [19] show that gain

saturation stabilizes the symmetric steady states shown in Equation (92). Figure 11

illustrates this finding. In order to take advantage of this effect, a phenomenological

two-level saturable gain model is used [19].

G(N,E) =
1/τp +GN(N −Nth)

1 + β|E|2 (102)

where β is the gain saturation coefficient. Equation (102) replaces the linear gain

model in Equation (3). The rate equations are normalized using the same variables

as shown in Equations (21) with the addition of the dimensionless gain saturation

coefficient (β̂).

β̂ =
2β

GNτc
. (103)

Typical values of the gain saturation coefficient are 10−17 cm3 for InGaAsP [19] mak-

ing typical values for the dimensionless gain saturation coefficient around 0.01. In-

cluding the saturable gain model, decomposing, and normalizing yields

dR1

dt̂
=

1

2

(
1 + 2N̂1

1 + β̂R2
1

− 1

)
R1 + ηR2 cos(Θ + φ) (104)

dR2

dt̂
=

1

2

(
1 + 2N̂2

1 + β̂R2
2

− 1

)
R2 + ηR1 cos(Θ − φ) (105)

dΘ

dt̂
= −α

(
1 + 2N̂2

1 + β̂R2
2

− 1 + 2N̂1

1 + β̂R2
1

)
− η

(
R1

R2

sin(Θ − φ) +
R2

R1

sin(Θ + φ)

)
(106)

T
dN̂1

dt̂
= P̂1 − N̂1 −

(
1 + 2N̂1

1 + β̂R2
1

)
R2

1 (107)

T
dN̂2

dt̂
= P̂2 − N̂2 −

(
1 + 2N̂2

1 + β̂R2
2

)
R2

2. (108)
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The symmetric steady states with symmetric excess electrical pumping rates are found

to be

Θs = 0 N̂s =
β̂P̂s + 2η

2 + β̂
Rs =

√
P̂s − N̂s

1 + 2N̂s − β̂(P̂s − N̂s)
(109)

Θs = π N̂s =
β̂P̂s − 2η

2 + β̂
Rs =

√
P̂s − N̂s

1 + 2N̂s − β̂(P̂s − N̂s)
. (110)

By increasing the value of β̂, a set of stable steady states is attained at a value of

about 0.02 as shown in Figure 12. A gain saturation coefficient of 0.03 was chosen

to calculate the modulation response shown in Figure 13. The in-phase modulation

response has a −6 dB bandwidth of about 8.2 GHz and peaks around the relaxation

oscillation frequency at 3.5 GHz. The out-of-phase modulation has a −6 dB band-

width of about 9.9 GHz from the origin, but has an additional −6 dB band with a

width of about 10.5 GHz from 19.8 GHz to about 30.3 GHz. The out-of-phase mod-

ulation peaks around the secondary resonance frequency of 26.6 GHz. Comparing

Figure 7 and Figure 13 shows that a higher gain saturation coefficient preserves the

basic features of the modulation response when the gain is linear. Higher gain sat-

uration seems to dampen the resonance at the relaxation oscillation frequency while

enhancing the resonance at the secondary resonance frequency. This stabilization

scheme also does not create two different modulation responses for each laser as was

seen in the asymmetric stabilization scheme.
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Figure 11. Regions of stability for symmetric steady states of evanescent coupling
with symmetric pumping rates. (a) Steady state phase is zero and gain saturation is
ignored. (b) Steady state phase is π and gain saturation is ignored. (c) Steady state
phase is zero with gain saturation. (d) Steady state phase is π with gain saturation
Regions in gray are where the steady states are unstable. Regions in white are regions
where the steady states are stable.
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Figure 12. Damping coefficients vs. dimensionless gain saturation coefficient. The
steady states become stable at a coefficient value of about 0.02 where the coefficient
in (a) becomes negative. The split in (b) is due to the associated resonance frequency
becoming imaginary.
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Figure 13. Modulation response of twin evanescently coupled InGaAsP diode lasers.
Solid lines are the infinitesimal modulation limit and dots are numerical results at-
tained by modulating at an amplitude of 316 μA. The steady state phase difference
is π, current through the lasers is 47.4 mA, dimensionless coupling strength is 0.1,
and dimensionless gain coefficient is 0.03. (a) The response for in-phase modulation
peaks at the free running relaxation oscillation frequency of 3.5 GHz and has a −6 dB
bandwidth of about 8.2 GHz. (b) The response for out-of-phase modulation peaks at
the secondary resonance frequency of 26.6 GHz and has a −6 dB bandwidth of about
9.9 GHz, but the secondary resonance creates another −6 dB band from about 19.8
GHz to about 30.3 GHz.
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V. Summary and Conclusions

Laser rate equations for electric field, and carrier density can be used to study the

modulation response of a system of twin optically coupled diode lasers. The syn-

chronous steady states can be calculated analytically and used in a numerical algo-

rithm to calculate steady states where the normalized excess electrical pumping rates

in each laser are not the same. The stability of the steady states can be examined us-

ing a linear stability analysis that makes use of the Jacobian of the rate equations. An

algorithm using concepts from the linear stability analysis can be used to calculate

the infinitesimal modulation response. In addition to the infinitesimal modulation

response, the non-linear modulation response can be calculated by using a numeri-

cal method which integrates the rate equations, takes Fourier transforms, and makes

the appropriate ratios. For mutually coupled lasers, it is shown that the modula-

tion bandwidth of the coupled lasers does not show significant improvement over the

modulation bandwidth of the solitary laser, but the resonance at the frequency of free

running relaxation oscillations is suppressed while the coupled lasers are modulated

out-of-phase allowing for a flatter response. References [1] and [6] state that the mod-

ulation bandwidth for evanescently coupled diode lasers is significantly larger than

the bandwidth for a solitary diode laser when modulating the signals out-of-phase,

but the steady states about which the lasers are modulated are unstable. It is shown

in this document and Reference [18] that the steady states are unstable over most of

the parameter space. This is remedied by introducing asymmetric steady state cur-

rents through the laser or by introducing saturable gain [19]. Making use of this, the

benefits of twin evanescently coupled diode lasers as reported in References [1] and

[6] can be realized. Simulations in this document show that asymmetric stabilization

allows the coupled system to be effectively modulated out to about 25 GHz with a +6

dB band from 0-4.3 GHz and a −6 dB band spanning 19.4 GHz from 4.7-24.1 GHz.

For gain saturation stabilization, simulations show that the coupled system can be

effectively modulated out to a frequency of about 25 GHz with a −6 dB band from

0-9.9 GHz and another −6 dB band spanning 19.8 GHz from 10.5-30.3 GHz.
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There are some additional analytic, experimental, and modeling projects that

can grow form this work. Analytic expressions can be derived for most of the steady

states and infinitesimal modulation responses that were calculated using the algo-

rithms in Appendix E and Appendix C, but will require significant simplifications

and approximations to make them useful. Additional work can include experiments

were the modulation response is calculated for evanescent coupling [7] or for mutual

coupling [8] and compared to the results of the model. Additional modeling can

be completed by investigating different coupling schemes such as changing coupling

phases for mutual coupling and alternate configurations such as ring lasers [25]. In

this work the numerical calculation of the modulation response was used as a con-

firmation of the infinitesimal modulation response, but can be used to investigate

the non-linear dynamics of the system. One example of this is the investigation of

sub-harmonic and super-harmonic resonances [26] that occur when the modulation

amplitude is not infinitesimal as shown in Figure 14.
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Figure 14. Non-linear modulation response of twin mutually coupled InGaAsP
diode lasers with in-phase modulation. Coupling strength is 0.001 and the steady
state current is held at 47.4 mA. The legend indicates the modulation amplitude of
the current.
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This work has implications in current communications technology and future

technologies such as chaotic communications and photonic devices. Diode lasers are

currently used in todays communications systems, but there is always room for im-

provement. Increases in bandwidth and improved modulation properties, realized

through coupled diode laser systems, can make current systems faster and more ef-

ficient. It was shown that the steady states can be unstable for optically coupled

diode lasers, but this may not be an unwelcome circumstance. These states could

possibly be used to place the system into a chaotic state which can then be used to

encrypt information. Finally, this work can be used to drive upcoming technologies in

optoelectronic devices and photonic integrated circuitry, which can lead to the next

generation of communications and computing devices.
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Appendix A. Steady States for Mutual Coupling

The steady states of Equations (80-84) where P̂s,2 = P̂s,1 = P̂s are solved by satisfying

0 = N̂s,1Rs,1 + ηRs,2 cos(Θs) (111)

0 = N̂s,2Rs,2 + ηRs,1 cos(Θs) (112)

0 = −α(N̂s,2 − N̂s,1) − η sin(Θs)

(
Rs,1

Rs,2

+
Rs,2

Rs,1

)
(113)

0 = P̂s − N̂s,1 − (1 + 2N̂s,1)R
2
s,1 (114)

0 = P̂s − N̂s,2 − (1 + 2N̂s,2)R
2
s,2. (115)

These equations are solved for the steady states by reducing the equations to a system

of two equations with the steady state dimensionless excess carrier densities as the

variables. After this is accomplished, the new system is solved for the steady state

carrier densities. The first step is to solve Equation (111) for N̂s,1, Equation (112)

for N̂s,2, Equation (114) for Rs,1 and Equation (115) for Rs,2. This result in

N̂s,1 = −ηRs,2

Rs,1
cos(Θs) (116)

N̂s,2 = −ηRs,1

Rs,2
cos(Θ)s (117)

Rs,1 =

√
P̂s − N̂s,1

1 + 2N̂s,1

(118)

Rs,2 =

√
P̂s − N̂s,2

1 + 2N̂s,2

. (119)

These equations show the steady state carrier densities as functions of steady state

amplitudes and the steady state amplitudes as functions of steady state carrier den-

sities. The phase dependence is eliminated by dividing Equation (116) by Equation

(117) to arrive at

N̂s,1

N̂s,2

=
R2

s,2

R2
s,1

(120)

44



The first equation that relates N̂s,1 to N̂s,2 is found by substituting Equations (118,

119) into Equation (120) to arrive at

P̂s(N̂s,2 − N̂s,1) − (N̂2
s,2 − N̂2

s,1) − 2N̂s,2N̂s,1(N̂s,2 − N̂s,1) = 0. (121)

In order to find another relation between N̂s,1 and N̂s,2, the trigonometric identity,

sin2(Θs) + cos2(Θs) = 1, (122)

is used. The sin2(Θs) is found by solving either Equation (116) or Equation (117)

for sin(Θs), squaring the result, and including Equation (120) where appropriate.

The cos2(Θs) is found by solving Equation(113) for cos(Θs), squaring the result, and

including Equation (120) where appropriate. The results of this are

sin2(Θs) =
α2(N̂s,2 − N̂s,1)

2

η2(
N̂s,2

N̂s,1
+

N̂s,1

N̂s,2
+ 2)

(123)

cos2(Θs) =
N̂s,1N̂s,2

η2
. (124)

Using Equation (122) and Equations (123,124) a second relation between N̂s,1 and

N̂s,2 is found to be

N̂s,2N̂s,1

(
(N̂s,2 + N̂s,1)

2 + α2(N̂s,2 − N̂s,1)
2
)
− η2(N̂s,2 + N̂s,1)

2 = 0. (125)

Equations (121, 125) are now solved for the steady state carrier densities. For sim-

plicity

y = N̂s,2 + N̂s,1 (126)

x = N̂s,2 − N̂s,1 (127)
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are substituted into Equations (121,125) to arrive at

0 = P̂sx− (y2 − x2)(
x

2
) − xy (128)

0 =
y2 − x2

4
(y2 + α2x2) − η2y2. (129)

Equation (128) is now solved for x.

x =

⎧⎨
⎩ 0

±
√
y2 + 2y − 2P̂s.

(130)

The solution where x = 0 is substituted into Equation (129) to yield the symmetric

steady states. These steady states are

Θs = 0 N̂s = −η Rs =

√
P̂s + η

1 − 2η
(131)

Θs = π N̂s = η Rs =

√
P̂s − η

1 + 2η
, (132)

where

N̂s = N̂s,1 = N̂s,2, Rs = Rs,1 = Rs,2.

The linear stability analysis in Section 3.1 is used to determine if the steady states

are stable with the parameters in Table 1, a steady state excess electrical pumping

rate from zero to two and a dimensionless coupling strength from zero to one. The

results of this analysis are shown in Figure 15. Either of the remaining solutions can
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Figure 15. Regions of stability for symmetric steady states of mutual coupling
with symmetric pumping rates and a steady state phase difference of (a) π and (b)
0. Regions in gray are where the steady states are unstable. Regions in white are
regions where the steady states are stable.

be substituted into Equation (129) to find

0 = y3 (1 + α2)

+ y2
(
2(α2 + η2) − P̂s(1 + α2)

)
− y

(
4P̂sα

2
)

+
(
2P̂ 2

s α
2
)
.

(133)

The asymmetric steady states are found by solving Equation (133) using the cu-

bic formula found in most algebra references. After solving for y, the solutions are

substituted into

N̂s,1 =
1

2

(
y ±

√
y2 + 2y − 2P̂s

)
(134)

N̂s,2 =
1

2

(
y ∓

√
y2 + 2y − 2P̂s

)
. (135)
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to find the steady state carrier densities which are then used to solve for the steady

state amplitudes and steady state phase difference. For these steady states to be

valid, they must be real and stable. For the steady states to be real, y must be real

as well as a part of the space ((y ≤ −1 −
√

1 + 2P̂s) ∪ (y ≥ −1 +
√

1 + 2P̂s)) to

satisfy Equation (130). With this and the linear stability analysis, the steady states

either do not exist or are unstable for the parameters in Table 1, a steady state excess

electrical pumping rate from zero to two and a dimensionless coupling strength from

zero to one. The results of this analysis are shown in Figure 16.
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Figure 16. Regions of stability and existence for asymmetric steady states of mutual
coupling with symmetric pumping rates. Regions in gray are where the steady states
are unstable. Regions in dark gray are regions where the steady states are imaginary.
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Appendix B. Steady States for Evanescent Coupling

The steady states of Equations (86-90) where P̂s,2 = P̂s,1 = P̂s are solved by satisfying

0 = N̂s,1Rs,1 − ηRs,2 sin(Θs) (136)

0 = N̂s,2Rs,2 + ηRs,1 sin(Θs) (137)

0 = −α(N̂s,2 − N̂s,1) + η cos(Θs)

(
Rs,1

Rs,2

− Rs,2

Rs,1

)
(138)

0 = P̂s − N̂s,1 − (1 + 2N̂s,1)R
2
s,1 (139)

0 = P̂s − N̂s,2 − (1 + 2N̂s,2)R
2
s,2. (140)

These equations are solved for the steady states by reducing the equations to a system

of two equations with the steady state dimensionless excess carrier densities as the

variables. After this is accomplished, the new system is solved for the steady state

carrier densities. The first step is to solve Equation (136) for N̂s,1, Equation (137)

for N̂s,2, Equation (139) for Rs,1 and Equation (140) for Rs,2. This results in

N̂s,1 = η
Rs,2

Rs,1
sin(Θs) (141)

N̂s,2 = −ηRs,1

Rs,2
sin(Θ)s (142)

Rs,1 =

√
P̂s − N̂s,1

1 + 2N̂s,1

(143)

Rs,2 =

√
P̂s − N̂s,2

1 + 2N̂s,2

. (144)

This shows the steady state carrier densities as functions of steady state amplitudes

and the steady state amplitudes as functions of steady state carrier densities. The

phase dependence is eliminated by dividing Equation (141) by Equation (142) to

arrive at

N̂s,1

N̂s,2

= −R
2
s,2

R2
s,1

(145)

50



The first equation that relates N̂s,1 to N̂s,2 is found by substituting Equations (143,

144) into Equation (145) to arrive at

P̂s(N̂s,2 + N̂s,1) + 4P̂sN̂s,2N̂s,1 − (N̂2
s,2 + N̂2

s,1) − 2N̂s,2N̂s,1(N̂s,2 + N̂s,1) = 0. (146)

In order to find another relation between N̂s,1 and N̂s,2, the trigonometric identity,

sin2(Θs) + cos2(Θs) = 1, (147)

is used. The sin2(Θs) is found by solving either Equation (141) or Equation (142)

for sin(Θs), squaring the result, and including Equation (145) where appropriate.

The cos2(Θs) is found by solving Equation(138) for cos(Θs), squaring the result, and

including Equation (145) where appropriate. The results of this are

sin2(Θs) = −N̂s,1N̂s,2

η2
(148)

cos2(Θs) =
α2(N̂s,2 − N̂s,1)

2

η2(− N̂s,2

N̂s,1
− N̂s,1

N̂s,2
− 2)

. (149)

Using Equation (147) and Equations (148, 149) a second relation is found.

N̂s,2N̂s,1

(
(N̂s,2 + N̂s,1)

2 + α2(N̂s,2 − N̂s,1)
2
)

+ η2(N̂s,2 + N̂s,1)
2 = 0. (150)

Equations (146, 150) are now solved for the steady state carrier densities. For sim-

plicity

y = N̂s,2 + N̂s,1 (151)

x = N̂s,2 − N̂s,1 (152)
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are substituted into Equations(146,150) to arrive at

0 = P̂sy + (y2 − x2)(P̂s − y

2
) (153)

0 = η2y2 +
y2 − x2

4
(y2 + α2x2). (154)

Equation (153) is now solved for x.

x = ±
√
y(1 + y)(2P̂s − y)

1 + 2P̂s − y
. (155)

Either solution to x from Equation (155) can be substituted into Equation (154) to

arrive at

0 = y5 (1 + α2)

− y4
(
(1 − α2) + 3P̂s(1 + α2) + 2η2

)
− y3

(
4P̂sα

2 − (P̂s(1 + α2) + 4η2)(1 + 2P̂s)
)

− y2
(
2η2(1 + 2P̂s)

2 − 2P̂ 2
s α

2
)
.

(156)

One solution for Equation (156) is y = 0 which yields the symmetric steady states.

These steady states are

Θs = 0 N̂s = 0 Rs =

√
P̂s (157)

Θs = π N̂s = 0 Rs =

√
P̂s, (158)

where

N̂s = N̂s,1 = N̂s,2, Rs = Rs,1 = Rs,2.

The linear stability analysis in Section 3.1 is used to determine if the steady states are

stable with the parameters in Table 1, a steady state excess electrical pumping rate

from zero to two and a dimensionless coupling strength from 10−5 to one. The results
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of this analysis are shown in Figure 17. The asymmetric steady states are found
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Figure 17. Regions of stability for symmetric steady states of evanescent coupling
with symmetric pumping rates and a steady state phase difference of (a) π and (b)
0. Regions in gray are where the steady states are unstable. Regions in white are
regions where the steady states are stable.

by solving Equation (156) using the cubic formula found in most algebra references.

After solving for y, the solutions are substituted into

N̂s,1 =
1

2

⎛
⎝y ±

√
y(1 + y)(2P̂s − y)

1 + 2P̂s − y

⎞
⎠ (159)

N̂s,2 =
1

2

⎛
⎝y ∓

√
y(1 + y)(2P̂s − y)

1 + 2P̂s − y

⎞
⎠ (160)

to find the steady state carrier densities which can then be used to solve for the

steady state amplitudes and steady state phase difference. For these steady states to

be valid they must be real and stable. For the steady states to be real y must be real

as well as a part of the space ((y ≤ −1) ∪ ((y ≥ 0) ∩ (y ≤ 2P̂s)) ∪ (y > 1 + 2P̂s)) to

satisfy Equation (155). With this and the linear stability analysis, the steady states

either do not exist or are unstable for the parameters in Table 1, a steady state excess
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electrical pumping rate from zero to two and a dimensionless coupling strength from

10−5 to one. The results of this analysis are shown in Figure 18.
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Figure 18. Regions of stability and existence for asynchronous steady states of
evanescent coupling with synchronous pumping rates. Regions in gray are where the
steady states are unstable. Regions in dark gray are regions where the steady states
are imaginary.
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Appendix C. ModulatonResponse.m

This function calculates the infinitesimal modulation response using the procedure in

Section 3.2.

function [output, J, M0] = ModulationResponse(varargin)

if (strcmp(varargin{1}, ’help’))

fprintf(1, ’[output, J, M0] = ModulationResponse...

(w, h, f, a, b, tp, tc, L, r1, r2, t, n1, n2)\n\n’);

fprintf(1, ’Input:\n’);

fprintf(1, ’w: Normalized frequencies\n’);

fprintf(1, ’h: Coupling Strength\n’);

fprintf(1, ’f: Coupling Phase\n’);

fprintf(1, ’a: Line-width enhancement factor\n’);

fprintf(1, ’b: Gain saturation factor\n’);

fprintf(1, ’tp: Photon Lifetime (ps)\n’);

fprintf(1, ’tc: Carrier Lifetime (ns)\n’);

fprintf(1, ’L: Pump phase term (1 for in-phase, -1 for...

out-of-phase)\n’);

fprintf(1, ’r1: Steady state amplitude in laser 1\n’);

fprintf(1, ’r2: Steady state amplitude in laser 2\n’);

fprintf(1, ’t: Steady state phase\n’);

fprintf(1, ’n1: Steady state carrier density in laser 1\n’);

fprintf(1, ’n2: Steady state carrier density in laser 2\n\n’);

fprintf(1, ’Output:\n’);

fprintf(1, ’output: Modulation response\n’);

fprintf(1, ’J: Jacobian matrix\n’);

fprintf(1, ’M0: Modulation response at zero frequency\n\n\n’);

return;

end

w = varargin{1};

h = varargin{2};

f = varargin{3};

a = varargin{4};

b = varargin{5};

tp = varargin{6};

tc = varargin{7};

L = varargin{8};
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r1 = varargin{9};

r2 = varargin{10};

t = varargin{11};

n1 = varargin{12};

n2 = varargin{13};

T = tc*1000/tp;

s = size(w);

s = s(2);

output = zeros(s,2);

J = [ (1/2)*((1+2*n1)/(1+b*r1^2)-1)-b*(1+2*n1)*r1^2/(1+b*r1^2)^2,

h*cos(t+f),

-r2*h*sin(t+f),

r1/(1+b*r1^2),

0;

h*cos(t-f),

(1/2)*((1+2*n2)/(1+b*r2^2)-1)-b*(1+2*n2)*r2^2/(1+b*r2^2)^2,

-r1*h*sin(t-f),

0,

r2/(1+b*r2^2);

-h*(sin(t-f)/r2-(r2*sin(t+f))/r1^2)-a*b*(1+2*n1)*r1/(1+b*r1^2)^2,

-h*(sin(t+f)/r1-(r1*sin(t-f))/r2^2)+a*b*(1+2*n2)*r2/(1+b*r2^2)^2,

-h*(r1*cos(t-f)/r2 + r2*cos(t+f)/r1),

a/(1+b*r1^2),

-a/(1+b*r2^2);

(-2*(1+2*n1)*r1/(1+b*r1^2)+2*b*(1+2*n1)*r1^3/(1+b*r1^2)^2)/T,

0,

0,

(-1-2*r1^2/(1+b*r1^2))/T,

0;

0,

(-2*(1+2*n2)*r2/(1+b*r2^2)+2*b*(1+2*n2)*r2^3/(1+b*r2^2)^2)/T,

0,

0,

(-1-2*r2^2/(1+b*r2^2))/T];

p = [0; 0; 0; 1/T; L/T];

M0 = abs(inv(J)*(-p));
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for (n = 1:s)

W = i*w(n)*eye(5);

M = abs(inv(J-W)*(-p));

output(n,:) = [10*log10(M(1)/M0(1)), 10*log10(M(2)/M0(2))];

end

return;

57



Appendix D. NUMOR Source Code

This program calculates the non-linear modulation response as outlined in Section

3.3. A sample input file is shown below.

Photon Lifetime (ps) 1.600000

Carrier Lifetime (ns) 2.200000

Linewidth Enhancement Factor 5.000000

Gain Saturation Factor 0.000000

Coupling Strength 0.010000

Coupling Phase 0.000000

Pumping Level 1.056000

Pumping Difference 0.000000

Modulation Amplitude 0.528

High Frequency (GHz) 2.500000

Low Frequency (GHz) 1.000000

Frequency Steps 100

Frequency Periods 100

Time Steps 10000

Steady States

r1 1.042955

r2 1.042955

t 0.000000

n1 -0.010000

n2 -0.010000

”Photon Lifetime” is in picoseconds and ”Carrier Density” is in nanoseconds. The

”Linewidth Enhancement Factor” is dimensionless. The ”Gain Saturation Factor” is

the dimensionless gain saturation coefficient. ”Coupling Strength” is dimensionless

as well as the ”Coupling Phase”. The ”Pumping Level” is the steady state dimen-

sionless excess electrical pumping rate and the ”Pumping Difference” is the dimen-

sionless excess electrical pumping rate displacement. The ”Modulation Amplitude”

is in dimensionless form as well. Frequencies are in gigahertz. ”High Frequency” is

the highest modulation frequency to calculate and ”Low Frequency” is the lowest

frequency to calculate with ”Frequency Steps” as the integer number of steps in be-
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tween. ”Frequency Periods” and ”Time Steps” control the integration times in the

Runge-Kutta algorithm and must be integers.

#define _CRT_SECURE_NO_DEPRECATE

#include <stdio.h>

#include <math.h>

#include <conio.h>

#include <time.h>

#include <string.h>

#include <stdlib.h>

//Rate Equations________________________________________________________

double R1prime(double n, double beta, double r, double eta, double ri,

double theta, double phi)

{

return 0.5*((1+2.0*n)/(1+beta*pow(r,2.0))-1)*r+eta*ri*

cos(theta+phi);

}

double R2prime(double n, double beta, double r, double eta, double ri,

double theta, double phi)

{

return 0.5*((1+2.0*n)/(1+beta*pow(r,2.0))-1)*r+eta*ri*cos(theta-phi);

}

double Tprime(double alpha, double beta, double n2, double n1,

double eta, double theta, double phi, double r1,

double r2)

{

return -(alpha/2.0)*((1+2.0*n2)/(1+beta*pow(r2,2.0))-(1+2.0*n1)/

(1+beta*pow(r1,2.0)))-eta*((r1/r2)*sin(theta-phi)+(r2/r1)*

sin(theta+phi));

}

double N1prime(double p, double delta, double amp, double f, double t,

double n, double beta, double r, double T)

{

return (p-delta+amp*sin(f*t)-n-((1+2.0*n)/(1+beta*pow(r,2.0)))*

pow(r,2.0))/T;

}
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double N2prime(double p, double delta, double amp, double f, double t,

double n, double beta, double r, double T, double L)

{

return (p+delta+L*amp*sin(f*t)-n-((1+2.0*n)/(1+beta*pow(r,2.0)))*

pow(r,2.0))/T;

}

//______________________________________________________________________

int main()

{

//Allocating memory to variables________________________________________

FILE* input; //Pointer to input stream

FILE* output; //Pointer to output stream

double pi = acos(-1.0); //Pi

time_t ti; //Clock time

char dump[100]; //Character array dump

double t; //Normalized time

double dt; //Time step

int steps; //Number of time steps

double p; //Normalized electrical pumping rate

double amp; //Amplitude of the electrical modulation

double delta; //P2 = p + delta, P1 = p - delta

double L; //1 for in-phase modulation, -1 for out

of phase modulation

double eta; //Coupling strength

double phi; //Coupling phase

double taup; //Photon lifetime

double tauc; //Carrier lifetime

double T; //Ratio of Photon lifetime to carrier

lifetime

double alpha; //Line-width enhancement factor

double beta; //Gain saturation factor

double f; //Modulation frequency

double hif; //High modulation frequency to calculate

double lof; //Low modulation frequency to calculate

double bw; //High modulation frequency minus low

modulation frequency

int periods; //Number of modulation periods to

calculate

int fsteps; //Number of modulation response points to
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calculate

double real1; //Real part of the Fourier component of

laser1’s output

double imag1; //Imaginary part of the Fourier component

of laser1’s output

double real2; //Real part of the Fourier component of

laser2’s output

double imag2; //Imaginary part of the Fourier component

of laser2’s output

double realp; //Real part of the Fourier component of

the pump modulation

double imagp; //Imaginary part of the Fourier component

of the pump modulation

double k1r1; //Variables for the fourth order

Runge-Kutta routine

double k1r2;

double k1t;

double k1n1;

double k1n2;

double k2r1;

double k2r2;

double k2t;

double k2n1;

double k2n2;

double k3r1;

double k3r2;

double k3t;

double k3n1;

double k3n2;

double k4r1;

double k4r2;

double k4t;

double k4n1;

double k4n2;

//______________________________________________________________________

//Read input file and initialize variables______________________________

input = fopen("input.dat", "r");

if (input == NULL)

{

printf("ERROR: Input file did not open\n");
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printf("\nPress Any Key to Exit");

getch();

return 0;

}

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &taup);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &tauc);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &alpha);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &beta);

T = tauc*1000/taup;

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%lf", &eta);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%lf", &phi);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%lf", &p);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%lf", &delta);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%lf", &amp);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &hif);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &lof);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%i", &fsteps);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%i", &periods);

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);
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fscanf(input, "%i", &steps);

bw = hif - lof;

//Amplitude of laser 1 output

double* r1 = (double*)calloc(steps+1, sizeof(double));

//Amplitude of laser 2 output

double* r2 = (double*)calloc(steps+1, sizeof(double));

//Phase

double* theta = (double*)calloc(steps+1, sizeof(double));

//Carrier density in laser 1

double* n1 = (double*)calloc(steps+1, sizeof(double));

//Carrier density in laser 2

double* n2 = (double*)calloc(steps+1, sizeof(double));

//Pump modulation

double* dp = (double*)calloc(steps+1, sizeof(double));

fscanf(input, "%s", &dump); fscanf(input, "%s", &dump);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &r1[1]);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &r2[1]);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &theta[1]);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &n1[1]);

fscanf(input, "%s", &dump);

fscanf(input, "%lf", &n2[1]);

fclose(input);

//______________________________________________________________________

//Double check__________________________________________________________

printf("Photon Lifetime: %f (ps)\n", taup);

printf("Carrier Lifetime: %f (ns)\n", tauc);

printf("Linewidth Enhancement Factor: %f\n", alpha);

printf("Gain Saturation Factor: %f\n\n", beta);

printf("Coupling Strength: %f \n", eta);

printf("Coupling Phase: %f \n\n", phi);
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printf("Pumping Level: %f\n", p);

printf("Pumping Difference: %f\n", delta);

printf("Modulation Amplitude: %f\n\n", amp);

printf("High Frequency: %f (GHz)\n", hif);

printf("Low Frequency: %f (GHz)\n", lof);

printf("Frequency Steps: %i\n", fsteps);

printf("Frequency Periods: %i\n", periods);

printf("Time Steps: %i\n\n", steps);

printf("Steady States\n");

printf("r1: %f\n", r1[1]);

printf("r2: %f\n", r2[1]);

printf("t: %f\n", theta[1]);

printf("n1: %f\n", n1[1]);

printf("n2: %f\n\n", n2[1]);

printf("Are these correct? (Y/N): ");

scanf("%s", dump);

if (strncmp(dump, "n", 1) == 0)

{

printf("\nPress Any Key to Exit");

getch();

return 0;

}

printf("\nOut of Phase? (Y/N): ");

scanf("%s", dump);

if (strncmp(dump, "y", 1) == 0)

{

L = -1.0;

}

else

{

L = 1.0;

}

//______________________________________________________________________

//Start the clock_______________________________________________________

time(&ti);
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//______________________________________________________________________

//Initializing output stream____________________________________________

output = fopen("output.dat", "w");

if (output == NULL)

{

printf("ERROR: Output file did not open\n");

printf("\nPress Any Key to Exit");

getch();

return 0;

}

fprintf(output, "Frequency (GHz)\tModulation Response (dB)\t

Modulation Response (dB)\n");

//______________________________________________________________________

//Scanning modulation frequencies_______________________________________

for (int m = 0; m <= fsteps; m++)

{

printf("\nFrequency Point %i/%i\n", m, fsteps);

f = (lof + m*bw/fsteps)*taup*0.001;

dt = periods/(f*steps);

f = 2.0*pi*f;

t = 0.0;

//Fourth order Runge-Kutta routine____________________________________

for (int n = 2; n <= steps+1; n++)

{

k1r1 = dt*R1prime(n1[n-1], beta, r1[n-1], eta,

r2[n-1], theta[n-1], phi);

k1r2 = dt*R2prime(n2[n-1], beta, r2[n-1], eta,

r1[n-1], theta[n-1], phi);

k1t = dt*Tprime(alpha, beta, n2[n-1], n1[n-1], eta,

theta[n-1], phi, r1[n-1], r2[n-1]);

k1n1 = dt*N1prime(p, delta, amp, f, t, n1[n-1], beta,

r1[n-1], T);

k1n2 = dt*N2prime(p, delta, amp, f, t, n2[n-1], beta,

r2[n-1], T, L);
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k2r1 = dt*R1prime(n1[n-1] + 0.5*k1n1, beta,

r1[n-1] + 0.5*k1r1, eta, r2[n-1] + 0.5*k1r2,

theta[n-1] + 0.5*k1t, phi);

k2r2 = dt*R2prime(n2[n-1] + 0.5*k1n2, beta,

r2[n-1] + 0.5*k1r2, eta, r1[n-1] + 0.5*k1r1,

theta[n-1] + 0.5*k1t, phi);

k2t = dt*Tprime(alpha, beta, n2[n-1] + 0.5*k1n2,

n1[n-1] + 0.5*k1n1, eta, theta[n-1] + 0.5*k1t,

phi, r1[n-1] + 0.5*k1r1, r2[n-1] + 0.5*k1r2);

k2n1 = dt*N1prime(p, delta, amp, f, t + dt/2,

n1[n-1] + 0.5*k1n1, beta, r1[n-1] + 0.5*k1r1,

T);

k2n2 = dt*N2prime(p, delta, amp, f, t + dt/2,

n2[n-1] + 0.5*k1n2, beta, r2[n-1] + 0.5*k1r2,

T, L);

k3r1 = dt*R1prime(n1[n-1] + 0.5*k2n1, beta,

r1[n-1] + 0.5*k2r1, eta, r2[n-1] + 0.5*k2r2,

theta[n-1] + 0.5*k2t, phi);

k3r2 = dt*R2prime(n2[n-1] + 0.5*k2n2, beta,

r2[n-1] + 0.5*k2r2, eta, r1[n-1] + 0.5*k2r1,

theta[n-1] + 0.5*k2t, phi);

k3t = dt*Tprime(alpha, beta, n2[n-1] + 0.5*k2n2,

n1[n-1] + 0.5*k2n1, eta, theta[n-1] + 0.5*k2t,

phi, r1[n-1] + 0.5*k2r1, r2[n-1] + 0.5*k2r2);

k3n1 = dt*N1prime(p, delta, amp, f, t + dt/2,

n1[n-1] + 0.5*k2n1, beta, r1[n-1] + 0.5*k2r1,

T);

k3n2 = dt*N2prime(p, delta, amp, f, t + dt/2,

n2[n-1] + 0.5*k2n2, beta, r2[n-1] + 0.5*k2r2,

T, L);

k4r1 = dt*R1prime(n1[n-1] + k3n1, beta,

r1[n-1] + k3r1, eta, r2[n-1] + k3r2,

theta[n-1] + k3t, phi);

k4r2 = dt*R2prime(n2[n-1] + k3n2, beta,

r2[n-1] + k3r2, eta, r1[n-1] + k3r1,

theta[n-1] + k3t, phi);

k4t = dt*Tprime(alpha, beta, n2[n-1] + k3n2,

n1[n-1] + k3n1, eta, theta[n-1] + k3t, phi,

r1[n-1] + k3r1, r2[n-1] + k3r2);

k4n1 = dt*N1prime(p, delta, amp, f, t + dt,
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n1[n-1] + k3n1, beta, r1[n-1] + k3r1, T);

k4n2 = dt*N2prime(p, delta, amp, f, t + dt,

n2[n-1] + k3n2, beta, r2[n-1] + k3r2, T, L);

r1[n] = r1[n-1] + (k1r1 + 2.0*k2r1 + 2.0*k3r1 +

k4r1)/6.0;

r2[n] = r2[n-1] + (k1r2 + 2.0*k2r2 + 2.0*k3r2 +

k4r2)/6.0;

theta[n] = theta[n-1] + (k1t + 2.0*k2t + 2.0*k3t +

k4t)/6.0;

n1[n] = n1[n-1] + (k1n1 + 2.0*k2n1 + 2.0*k3n1 +

k4n1)/6.0;

n2[n] = n2[n-1] + (k1n2 + 2.0*k2n2 + 2.0*k3n2 +

k4n2)/6.0;

dp[n] = amp*sin(f*(t + dt));

t = t + dt;

printf("Percent Complete: %3.0i\r", n*100/(steps+1));

}

//________________________________________________________________

//Calculate Fourier component_____________________________________

real1 = 0.0;

imag1 = 0.0;

real2 = 0.0;

imag2 = 0.0;

realp = 0.0;

imagp = 0.0;

for (int l = 1; l <= steps+1; l++)

{

real1 = real1 + r1[l]*cos(2.0*pi*periods*(l-1)/

(steps+1));

imag1 = imag1 + r1[l]*sin(2.0*pi*periods*(l-1)/

(steps+1));

real2 = real2 + r2[l]*cos(2.0*pi*periods*(l-1)/

(steps+1));

imag2 = imag2 + r2[l]*sin(2.0*pi*periods*(l-1)/

(steps+1));

realp = realp + dp[l]*cos(2.0*pi*periods*(l-1)/
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(steps+1));

imagp = imagp + dp[l]*sin(2.0*pi*periods*(l-1)/

(steps+1));

}

//________________________________________________________________

//Print to output stream__________________________________________

fprintf(output, "%le\t%le\t%le\n", lof + m*bw/fsteps,

10.0*log10(sqrt(pow(real1, 2.0) + pow(imag1, 2.0))

/sqrt(pow(realp, 2.0) + pow(imagp, 2.0))),

10.0*log10(sqrt(pow(real2, 2.0) + pow(imag2, 2.0))

/sqrt(pow(realp, 2.0) + pow(imagp, 2.0))));

//________________________________________________________________

}

//______________________________________________________________________

//Calculate run time, close the output stream, and end the program______

printf("\n\nThis run took %.0f seconds to complete\n",

difftime(time(NULL), ti));

fclose(output);

printf("\nPress Any Key to Exit");

getch();

return 0;

//______________________________________________________________________

}
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Appendix E. SteadyState.m

This function calculates steady states using Newton’s method as outlined in Section

4.2.1. The initial guess is the symmetric steady states with user specified initial

steady state phase difference. The Newton’s method algorithm terminates when the

steady states are reached, when the tolerance is met or when the maximum number

if iterations is exceeded. The stability of these states is determined using the linear

stability analysis in Section 3.1, and the user is inform if they are stable or not.

Finally the user is prompted if he wants to create an input file using the calculated

steady states for the program that calculates the non-linear modulation response.

function [output, evalues] = SteadyState(varargin)

s = size(varargin);

s = s(2);

if ((s ==1)&&(strcmp(varargin{1}, ’help’)))

fprintf(1, ’[output, evalues] = SteadyState...

(h, f, p, d, a, b, tp, tc, t)\n\n’);

fprintf(1, ’Input\n’);

fprintf(1, ’h: Coupling Strength\n’);

fprintf(1, ’f: Coupling Phase\n’);

fprintf(1, ’p: Average pump level\n’);

fprintf(1, ’d: Pump difference\n’);

fprintf(1, ’a: Line-width enhancement factor\n’);

fprintf(1, ’b: Gain saturation factor\n’);

fprintf(1, ’tp: Photon Lifetime (ps)\n’);

fprintf(1, ’tc: Carrier Lifetime (ns)\n’);

fprintf(1, ’t: Steady state phase starting point\n\n’);

fprintf(1, ’Output:\n’);

fprintf(1, ’output: Steady States\n’);

fprintf(1, ’evalues: Eigenvalues of the Jacobian matrix\n\n’);

fprintf(1, ’Tags:\n’);

fprintf(1, ’MaxIterations: Set maximum number of iterations\n’);

fprintf(1, ’Tolerance: Set tolerance level\n\n’);

return;

end

if ((s == 10)||(s == 12)||(s < 9)||(s > 13))

fprintf(1, ’Improper number of input arguments. \n’);

return;

end
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h = varargin{1};

f = varargin{2};

p = varargin{3};

d = varargin{4};

a = varargin{5};

b = varargin{6};

tp = varargin{7};

tc = varargin{8};

t = varargin{9};

T = tc*1000/tp;

if (s == 9)

tol = 1.0e-6;

maxit = 100;

end

if (s == 11)

if (strcmp(varargin{10}, ’MaxIterations’))

maxit = varargin{11};

tol = 10e-6;

elseif (strcmp(varargin{10}, ’Tolerance’))

tol = varargin{11};

maxit = 100;

else

fprintf(1, ’"%s" is an improper tag. \n’, varargin{10});

return;

end

end

if (s == 13)

if (strcmp(varargin{10}, ’MaxIterations’))

maxit = varargin{11};

tol = varargin{13};

elseif (strcmp(varargin{10}, ’Tolerance’))

tol = varargin{11};

maxit = varargin{13};

else

fprintf(1, ’"%s" is an improper tag. \n’, varargin{10});

return;

end

end
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n1 = (b*p - 2*h*cos(t + f))/(2 + b);

n2 = (b*p - 2*h*cos(t - f))/(2 + b);

r1 = sqrt((p - n1)/(1 + 2*n1 - b*(p - n1)));

r2 = sqrt((p - n2)/(1 + 2*n2 - b*(p - n2)));

R1prime = inline(’(1/2)*((1+2*n)/(1+b*r^2)-1)*r + h*ri*cos(t+f)’,...

’n’, ’b’, ’r’, ’h’, ’ri’, ’t’, ’f’);

R2prime = inline(’(1/2)*((1+2*n)/(1+b*r^2)-1)*r + h*ri*cos(t-f)’,...

’n’, ’b’, ’r’, ’h’, ’ri’, ’t’, ’f’);

Tprime = inline(’-(a/2)*((1+2*n2)/(1+b*r2^2)-(1+2*n1)/(1+b*r1^2))...

-h*(r1*sin(t-f)/r2 + r2*sin(t+f)/r1)’,...

’a’, ’b’, ’n2’, ’n1’, ’h’, ’t’, ’f’, ’r1’, ’r2’);

N1prime = inline(’p - d - n - ((1+2*n)/(1+b*r^2))*r^2’,...

’p’, ’d’, ’n’, ’b’, ’r’);

N2prime = inline(’p + d - n - ((1+2*n)/(1+b*r^2))*r^2’,...

’p’, ’d’, ’n’, ’b’, ’r’);

for (n = 1:maxit)

J = [ (1/2)*((1+2*n1)/(1+b*r1^2)-1)-b*(1+2*n1)*r1^2/(1+b*r1^2)^2,

h*cos(t+f),

-r2*h*sin(t+f),

r1/(1+b*r1^2),

0;

h*cos(t-f),

(1/2)*((1+2*n2)/(1+b*r2^2)-1)-b*(1+2*n2)*r2^2/(1+b*r2^2)^2,

-r1*h*sin(t-f),

0,

r2/(1+b*r2^2);

-h*(sin(t-f)/r2-(r2*sin(t+f))/r1^2)-a*b*(1+2*n1)*r1/(1+b*r1^2)^2,

-h*(sin(t+f)/r1-(r1*sin(t-f))/r2^2)+a*b*(1+2*n2)*r2/(1+b*r2^2)^2,

-h*(r1*cos(t-f)/r2 + r2*cos(t+f)/r1),

a/(1+b*r1^2),

-a/(1+b*r2^2);

(-2*(1+2*n1)*r1/(1+b*r1^2)+2*b*(1+2*n1)*r1^3/(1+b*r1^2)^2)/T,

0,

0,

(-1-2*r1^2/(1+b*r1^2))/T,

0;

0,

(-2*(1+2*n2)*r2/(1+b*r2^2)+2*b*(1+2*n2)*r2^3/(1+b*r2^2)^2)/T,

0,
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0,

(-1-2*r2^2/(1+b*r2^2))/T];

F = [R1prime(n1, b, r1, h, r2, t, f);

R2prime(n2, b, r2, h, r1, t, f);

Tprime(a, b, n2, n1, h, t, f, r1, r2);

N1prime(p, d, n1, b, r1);

N2prime(p, d, n2, b, r2)];

dif = inv([1,0,0,0,0;0,1,0,0,0;0,0,1,0,0;0,0,0,T,0;0,0,0,0,T]*J)*F;

r1 = r1 - dif(1);

r2 = r2 - dif(2);

t = t - dif(3);

n1 = n1 - dif(4);

n2 = n2 - dif(5);

if (sqrt(dif*dif’) < tol)

fprintf(1, ’Steady states reached within tolerance at ...

iteration: %i \n\n’, n-1);

output = [r1, r2, t, n1, n2];

break;

elseif (n == maxit)

output = [r1, r2, t, n1, n2];

fprintf(1, ’Maximum number of iterations was reached before ...

tolerance was met. \n\n’);

end

end

evalues = eig(J);

if ((real(evalues(1)) <= 0)&&(real(evalues(2)) <= 0)&&...

(real(evalues(3)) <= 0)&&(real(evalues(4)) <= 0)&&...

(real(evalues(5)) <= 0))

fprintf(1, ’The steady states are stable\n\n’);

else
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fprintf(1, ’The steady states are unstable\n\n’);

end

fprintf(1, ’Steady States\n’);

fprintf(1, ’%f\n’, output);

str = input(’\nCreate a NUMOR input file (y/n): ’, ’s’);

if (strcmp(str, ’y’))

fid = fopen(’input.dat’, ’w’);

if (fid == -1)

fprintf(1, ’\nERROR: Input file failed to open\n’)

return;

end

fprintf(fid, ’Photon Lifetime (ps) %f\n’, tp);

fprintf(fid, ’Carrier Lifetime (ns) %f\n’, tc);

fprintf(fid, ’Linewidth Enhancement Factor %f\n’, a);

fprintf(fid, ’Gain Saturation Factor %f\n\n’, b);

fprintf(fid, ’Coupling Strength %f\n’, h);

fprintf(fid, ’Coupling Phase %f\n\n’, f);

fprintf(fid, ’Pumping Level %f\n’, p);

fprintf(fid, ’Pumping Difference %f\n’, d);

fprintf(fid, ’Modulation Amplitude \n\n’);

fprintf(fid, ’High Frequency (GHz) \n’);

fprintf(fid, ’Low Frequency (GHz) \n’);

fprintf(fid, ’Frequency Steps \n’);

fprintf(fid, ’Frequency Periods \n’);

fprintf(fid, ’Time Steps \n\n’);

fprintf(fid, ’Steady States\n’);

fprintf(fid, ’r1 %f\n’, r1);

fprintf(fid, ’r2 %f\n’, r2);

fprintf(fid, ’t %f\n’, t);

fprintf(fid, ’n1 %f\n’, n1);

fprintf(fid, ’n2 %f’, n2);

fclose(fid);

end

return;
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